University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Global hydrostatic approximation of hyperbolic Navier-Stokes system with small Gevrey class 2 data

Global hydrostatic approximation of hyperbolic Navier-Stokes system with small Gevrey class 2 data

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact nobody.

TURW02 - Rigorous analysis of incompressible fluid models and turbulence

We investigate the hydrostatic approximation of  a hyperbolic version of  Navier-Stokes equations, which is  obtained by using  Cattaneo type law instead of Fourier law, evolving  in a thin strip $\R\times (0,\varepsilon)$. The formal limit of these equations is a hyperbolic Prandtl  type equation. We first prove the global existence  of  solutions to these equations under a uniform smallness assumption on the data in Gevrey $2$ class. Then we justify the limit globally-in-time from the anisotropic hyperbolic Navier-Stokes system to the hyperbolic Prandtl system with such Gevrey $2$ class data. Compared with \cite{PZZ2} for the hydrostatic approximation of 2-D classical Navier-Stokes system with analytic data, here the initial data belong to the Gevrey $2$ class, which is very sophisticated even for the well-posedness  of the classical Prandtl system (see \cite{DG19,WWZ1}), furthermore, the estimate of the pressure term in the hyperbolic Prandtl system arises additional difficulties. This is a joint work with M. Paicu.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity