University of Cambridge > > Isaac Newton Institute Seminar Series > Turbulent dynamics of pipe flows captured in a reduced model

Turbulent dynamics of pipe flows captured in a reduced model

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

The Nature of High Reynolds Number Turbulence

Significant success has been achieved in recent years by a dynamical systems approach to low Reynolds number turbulence, particularly regarding transition and their relation to coherent structures. Establishing links with experiments and simulations of turbulent flows, however, has been stifled by the vastness of the number of degrees of freedom in real flows. This both serves to mask the underlying dynamics and renders the simulations expensive. In plane Couette flows the Minimal Flow Unit was introduced as a testing ground for probing transitional dynamics. For pipe flow we introduce a 2.5-dimensional model which preserves the key spatio-temporal features—localised puffs, expanding slugs, and long-term transients. Simulations within this model are already proving fruitful in directing parallel simulations in 3-dimensions, which would otherwise prove costly to run without a clear target.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity