University of Cambridge > > Isaac Newton Institute Seminar Series > High-order Discontinuous Galerkin methods for the numerical modelling of earthquake ground motion

High-order Discontinuous Galerkin methods for the numerical modelling of earthquake ground motion

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

GCSW01 - Tutorial workshop

A number of challenging geophysical applications requires a flexible representation of the geometry and an accurate approximation of the solution field. Paradigmatic examples include seismic wave propagation and fractured reservoir simulations. The main challenges are i) the complexity of the physical domain, due to the presence of localized geological irregularities, alluvial basins, faults and fractures; ii) the heterogeneities in the medium, with significant and sharp contrasts; and iii) the coexistence of different physical models. The high-order discontinuous Galerkin FEM possesses the built-in flexibility to naturally accommodate both non-matching meshes, possibly made of polygonal and polyhedral elements, and high-order approximations in any space dimension. In this talk I will discuss recent advances in the development and analysis of high-order DG methods for the numerical approximation of seismic wave propagation phenomena. I will analyse the stability and the theoretical properties of the scheme and present some simulations of real large-scale seismic events in three-dimensional complex media.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity