University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > An Additivity Theorem for cobordism categories, with applications to Hermitian K-theory

An Additivity Theorem for cobordism categories, with applications to Hermitian K-theory

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

HHH - Homotopy harnessing higher structures

The goal of this talk is to explain that Genauer's computation of the cobordism category with boundaries is a precise analogue of Waldhausen's additivity theorem in algebraic K-theory, and to give a new, parallel proof of both results. The same proof technique also applies to cobordism categories of Poincaré chain complexes in the sense of Ranicki. Here we obtain that its classifying space is the infinite loop space of a non-connective spectrum which has similar properties as Schlichting's Grothendieck-Witt spectrum when 2 is invertible; but it turns out that these properties still hold even if 2 is not invertible. This talk is partially based on joint work with B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin and Th. Nikolaus.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity