University of Cambridge > > Isaac Newton Institute Seminar Series > Thermodynamic capacity of quantum processes

Thermodynamic capacity of quantum processes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact

MQIW05 - Beyond I.I.D. in information theory

Thermodynamics imposes restrictions on what state transformations are possible. In the macroscopic limit of asymptotically many independent copies of a state—as for instance in the case of an ideal gas—the possible transformations become reversible and are fully characterized by the free energy. Here, we present a thermodynamic resource theory for quantum processes that also becomes reversible in the macroscopic limit. Namely, we identify a unique single-letter and additive quantity, the thermodynamic capacity, that characterizes the “thermodynamic value” of a quantum channel. As a consequence the work required to simulate many repetitions of a quantum process employing many repetitions of another quantum process becomes equal to the difference of the respective thermodynamic capacities. For our proof, we construct an explicit universal implementation of any quantum process using Gibbs-preserving maps and a battery, requiring an amount of work asymptotically equal to the thermodynamic capacity. This implementation is also possible with thermal operations in the case of time-covariant quantum processes or when restricting to independent and identical inputs. In our derivations we make extensive use of Schur-Weyl duality and information-theoretic routines, leading to a generalized notion of quantum typical subspaces. [joint work with Mario Berta and Fernando Brandão]

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2018, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity