University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > The fractal dimension of Liouville quantum gravity: monotonicity, universality, and bounds

The fractal dimension of Liouville quantum gravity: monotonicity, universality, and bounds

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

RGMW06 - RGM follow up

We show that for each $\gamma \in (0,2)$, there is an exponent $d_\gamma > 2$, the ``fractal dimension of $\gamma$Liouville quantum gravity (LQG)”, which describes the ball volume growth exponent for certain random planar maps in the $\gamma$-LQG universality class, the graph-distance displacement exponent for random walk on these random planar maps, the exponent for the Liouville heat kernel, and exponents for various continuum approximations of $\gamma$-LQG distances such as Liouville graph distance and Liouville first passage percolation. This builds on work of Ding-Zeitouni-Zhang (2018). We also show that $d_\gamma$ is a continuous, strictly increasing function of $\gamma$ and prove upper and lower bounds for $d_\gamma$ which in some cases greatly improve on previously known bounds for the aforementioned exponents. For example, for $\gamma=\sqrt 2$ (which corresponds to spanning-tree weighted planar maps) our bounds give $3.4641 \leq d_{\sqrt 2} \leq 3.63299$ and in the limiting case we get $4.77485 \leq \lim_{\gamma\rightarrow 2^} d_\gamma \leq 4.89898$. Based on joint works with Jian Ding, Nina Holden, Tom Hutchcroft, Jason Miller, and Xin Sun.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity