COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Consistency of stepwise uncertainty reduction strategies for Gaussian processes
Consistency of stepwise uncertainty reduction strategies for Gaussian processesAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact INI IT. UNQ - Uncertainty quantification for complex systems: theory and methodologies In the first part of the talk, we will introduce spatial Gaussian processes. Spatial Gaussian processes are widely studied from a statistical point of view, and have found applications in many fields, including geostatistics, climate science and computer experiments. Exact inference can be conducted for Gaussian processes, thanks to the Gaussian conditioning theorem. Furthermore, covariance parameters can be estimated, for instance by Maximum Likelihood. In the second part of the talk, we will introduce a class of iterative sampling strategies for Gaussian processes, called 'stepwise uncertainty reduction' (SUR). We will give examples of SUR strategies which are widely applied to computer experiments, for instance for optimization or detection of failure domains. We will provide a general consistency result for SUR strategies, together with applications to the most standard examples. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge Centre for Data-Driven Discovery (C2D3) Tanner Lectures Power and VisionOther talksA superpopulation treatment to case-control data analysis Dynamics of heat transfer and exchanges across the Antarctic Slope Front South American Opuntioids Let Your Hands Do the Thinking! A Humble Practitioner's Approach to Lego® Serious Play™ in Business Education Using Microwell Array Technology to Probe Chemistry and Biology at Their Fundamental Limits |