University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Functional regression on manifold with contamination

Functional regression on manifold with contamination

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

STSW02 - Statistics of geometric features and new data types

We propose a new perspective on functional regression with a predictor process via the concept of manifold that is intrinsically finite-dimensional and embedded in an infinite-dimensional functional space, where the predictor is contaminated with discrete/noisy measurements. By a novel method of functional local linear manifold smoothing, we achieve a polynomial rate of convergence that adapts to the intrinsic manifold dimension and the level of sampling/noise contamination with a phase transition phenomenon depending on their interplay. This is in contrast to the logarithmic convergence rate in the literature of functional nonparametric regression. We demonstrate that the proposed method enjoys favorable finite sample performance relative to commonly used methods via simulated and real data examples. (Joint with Zhenhua Lin)

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity