University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Procrustes Analysis of Covariance Operators and Optimal Transport of Gaussian Processes

Procrustes Analysis of Covariance Operators and Optimal Transport of Gaussian Processes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

STSW02 - Statistics of geometric features and new data types

Covariance operators are fundamental in functional data analysis, providing the canonical means to analyse functional variation via the celebrated Karhunen-Loève expansion. These operators may themselves be subject to variation, for instance in contexts where multiple functional populations are to be compared. Statistical techniques to analyse such variation are intimately linked with the choice of metric on covariance operators, and the intrinsic infinite-dimensionality of these operators. We will describe the manifold-like geometry of the space of trace-class infinite-dimensional covariance operators and associated key statistical properties, under the recently proposed infinite-dimensional version of the Procrustes metric. In particular, we will identify this space with that of centred Gaussian processes equipped with the Wasserstein metric of optimal transportation. The identification allows us to provide a description of those aspects of the geometry that are important in terms of statistical inference, and establish key properties of the Fréchet mean of a random sample of covariances, as well as generative models that are canonical for such metrics. The latter will allow us to draw connections with the problem of registration of warped functional data. Based on joint work with V. Masarotto (EPFL) and Y. Zemel (Göttingen).

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity