University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Surrogate models in Bayesian Inverse Problems

Surrogate models in Bayesian Inverse Problems

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

UNQW02 - Surrogate models for UQ in complex systems

Co-authors: Andrew Stuart (Caltech) , Han Cheng Lie and Timm Sullivan (Free University Berlin)

We are interested in the inverse problem of estimating unknown parameters in a mathematical model from observed data. We follow the Bayesian approach, in which the solution to the inverse problem is the probability distribution of the unknown parameters conditioned on the observed data, the so-called posterior distribution. We are particularly interested in the case where the mathematical model is non-linear and expensive to simulate, for example given by a partial differential equation. We consider the use of surrogate models to approximate the Bayesian posterior distribution. We present a general framework for the analysis of the error introduced in the posterior distribution, and discuss particular examples of surrogate models such as Gaussian process emulators and randomised misfit approaches.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2018 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity