University of Cambridge > > Theory - Chemistry Research Interest Group > Liquid State Theory Meets Deep Learning and Molecular Informatics

Liquid State Theory Meets Deep Learning and Molecular Informatics

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Lisa Masters.

A large class of problems in machine learning pertains to making sense of high dimensional and unlabelled data. The challenge lies in separating direct variable-variable interactions (e.g. cause and effect) and transitive correlations, as well as removing noise due to insufficient number of samples relative to the number of variables. In this talk, I will discuss an Ornstein-Zernike-like approach for data analysis that disentangles correlations in datasets using ideas from the theory of liquids. The Ornstein-Zernike closure is parameterised by deep learning, and a framework inspired by random matrix theory is used to remove finite sampling noise. I will illustrate this approach by applying it to problems such as ligand-based virtual screening and predicting protein function from sequence covariation.

This talk is part of the Theory - Chemistry Research Interest Group series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity