![]() |
COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. | ![]() |
University of Cambridge > Talks.cam > Theory - Chemistry Research Interest Group > Designing “Materials that Compute”: Exploiting the Properties of Self-oscillating Polymer Gels
![]() Designing “Materials that Compute”: Exploiting the Properties of Self-oscillating Polymer GelsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Lucy Colwell. Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. The oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”. This talk is part of the Theory - Chemistry Research Interest Group series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge Linguistics Forum Cambridge University Geographical Society (CUGS) talks Cambiowebinars Seminar Series Feb-Apr 2015 Type the title of a new list here Lattice field theory informal seminars Centre Family Research/PsychOther talksBayesian deep learning Title to be confirmed Around the world in 605 State energy agreements Anti-scarring therapies for ocular fibrosis Prof Murray Shanahan: Artificial Intelligence Equations in groups |