COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

University of Cambridge > Talks.cam > Theory of Condensed Matter > Non-equilibrium steady states in many-body quantum systems

## Non-equilibrium steady states in many-body quantum systemsAdd to your list(s) Download to your calendar using vCal - Benjamin Doyon, King's College London
- Thursday 12 March 2015, 14:15-15:45
- TCM Seminar Room, Cavendish Laboratory.
If you have a question about this talk, please contact Dr G Moller. Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. If there are nonzero steady currents in the central region then we say that a non-equilibrium steady state emerges; their presence is a signature of ballistic transport. I will discuss some recent results for such non-equilibrium steady states in any dimensionality, obtained with my collaborators Denis Bernard and Marianne Hoogeveen, and Joe Bhaseen, Andrew Lucas and Koenraad Schalm. I will first discuss a simple and general bound on the average current and on the noise, which occur, under certain conditions, from the Lieb-Robinson bound. This suggests to define a natural velocity parameter bounded by the Lieb-Robinson velocity: it is a ``nonlinear sound velocities’’, specializing to the sound velocity near equilibrium in non-integrable models and to a ``generalized sound velocities’’ encoding generalized Gibbs thermalization in integrable models. Then, I will discuss explicit results concentrating on conformal field theories. I will explain how to obtain the exact current in one dimension using chiral factorization, and how this generalizes in two separate ways to higher dimensions: for interacting models using fluid dynamics and AdS/CFT ideas, and for non-interacting models where independent mode thermalization occurs. Interestingly, the general bound is saturated at one-dimensional criticality, and in interacting models, the nonlinear sound velocity has an explicit physical realization as the velocity of (almost-)shock waves emanating form the contact hypersurface. If time permits, I will explain how ``extended fluctuation relations’’ hold in all cases, leading an exact description of the large-time fluctuations (interpreted as independent Poisson processes). This talk is part of the Theory of Condensed Matter series. ## This talk is included in these lists:- All Cavendish Laboratory Seminars
- All Talks (aka the CURE list)
- Centre for Health Leadership and Enterprise
- Combined TCM Seminars and TCM blackboard seminar listing
- Featured lists
- Lennard-Jones Centre
- ME Seminar
- Neurons, Fake News, DNA and your iPhone: The Mathematics of Information
- PMRFPS's
- School of Physical Sciences
- TCM Blackboard Series
- TCM Seminar Room, Cavendish Laboratory
- Theory of Condensed Matter
- Thin Film Magnetic Talks
Note that ex-directory lists are not shown. |
## Other listsBennett Institute for Public Policy World History Workshop Reading Group bdj50: Conference on the past, present and future of Josephson Physics## Other talksGroup covariance functions for Gaussian process metamodels with categorical inputs The genetic framework of germline stem cell development Adrian Seminar: Ensemble coding in amygdala circuits TO A TRILLION AND BEYOND: THE FUTURE OF COMPUTING AND THE INTERNET OF THINGS - The IET Cambridge Prestige Lecture |