COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
Sparse Sampling of SkyAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact David Titterington. The next generation of galaxy surveys will observe millions of galaxies over large volumes of the universe. These surveys are expensive both in time and cost, raising questions regarding optimal investment of this time and money. In this work we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian Experimental Design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.4%. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky we can in fact constrain the parameters with errors reduced by 28%. This talk is part of the Cavendish Astrophysics Seminars series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge Cancer Centre seminars Cambridge Medieval Art Seminar Series Cambridge Conservation Seminars CrisisCamp Cambridge CQIF Seminar Cambridge University Geographical SocietyOther talksPTPmesh: Data Center Network Latency Measurements Using PTP Land of Eagles - Albania: from closed nation to wildlife paradise - where next? Phylogenetic hypothesis of the Oleeae tribe (Oleaceae) Diversification and molecular evolution patterns in plastid and nuclear ribosomal DNA Modelling seasonal acceleration of land terminating sectors of the Greenland Ice Sheet margin CANCELLED: How and why the growth and biomass varies across the tropics Aspects of adaptive Galerkin FE for stochastic direct and inverse problems Sneks long balus Single Cell Seminars (August) Coatable photovoltaics (Title t o be confirmed) Graph Legendrians and SL2 local systems |