COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

## CNN seminar - JanuaryAdd to your list(s) Download to your calendar using vCal - Speaker to be confirmed
- Thursday 26 January 2012, 14:00-15:00
- Keynes Hall in Kings College.
If you have a question about this talk, please contact Petra Vertes.
“Controlling centrality in complex networks” and
“On Joint Diagonalisation for Dynamic Network Analysis”
Node and edge centrality have a pivotal importance in the study and characterization of complex networks, and nowadays centrality measures are widely used to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific research. Many different structural properties have been used to assess the importance of nodes, but in most of the cases the centrality of every single node crucially depends on the entire pattern of connections. Therefore, the usual approach is to compute node centralities once the network structure is assigned. We discuss here a solution to the so-called “inverse centrality problem”, which consists into controlling the centrality scores of the nodes by opportunely acting on the structure of a given network. In particular, we focus our attention on spectral centrality measures and we show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5-10% of the nodes. Consequently, the rankings obtained by spectral centrality measures should be taken into account with extreme care, since they can be easily manipulated and even distorted by small groups of malicious nodes acting cooperatively. References: [1] V. Nicosia, R. Criado. M. Romance, G. Russo and V. Latora “Controlling centrality in complex networks” Scientific Reports 2, 218 (2012), doi:10.1038/srep00218 http://www.nature.com/srep/2012/120111/srep00218/full/srep00218.html
Joint diagonalisation (JD) is a technique used to estimate an average eigenspace of a set of matrices. Whilst it has been used successfully in many areas to track the evolution of systems via their eigenvectors; its application in network analysis is novel. The key focus is the use of JD on matrices of spanning trees of a network. This is especially useful in the case of real-world contact networks in which a single underlying static graph does not exist. The average eigenspace may be used to construct a graph which represents the `average spanning tree’ of the network or a representation of the most common propagation paths. We then examine the distribution of deviations from the average and find that this distribution in real-world contact networks is multi-modal; thus indicating several modes in the underlying network. These modes are identified and are found to correspond to particular times. Thus JD may be used to decompose the behaviour, in time, of contact networks and produce average static graphs for each time. This may be viewed as a mixture between a dynamic and static graph approach to contact network analysis. http://arxiv.org/abs/1110.1198 This talk is part of the Cambridge Networks Network (CNN) series. ## This talk is included in these lists:Note that ex-directory lists are not shown. |
## Other listsCambridge Neuroscience Seminar: New Approaches in Neuroscience Dr Ritchard Cable Cambridge University Railway Club## Other talksCambridge - Corporate Finance Theory Symposium September 2018 - Day 2 Virtual bargaining as a micro-foundation for communication Methane and the Paris Agreement Deterministic RBF Surrogate Methods for Uncertainty Quantification, Global Optimization and Parallel HPC Applications Glanville Lecture 2017/18: The Book of Exodus and the Invention of Religion Renationalisation of the Railways. A CU Railway Club Public Debate. |