University of Cambridge > > Theory - Chemistry Research Interest Group > DMC-ICE13: ambient and high pressure polymorphs of ice from Diffusion Monte Carlo and Density Functional Theory

DMC-ICE13: ambient and high pressure polymorphs of ice from Diffusion Monte Carlo and Density Functional Theory

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Lisa Masters.

First Year PhD Report

Ice is one of the most important and interesting molecular crystals, exhibiting a rich and evolving phase diagram. Recent discoveries mean that there are now 20 distinct polymorphs; a structural diversity that arises from a delicate interplay of hydrogen bonding and van der Waals dispersion forces. This wealth of structures provides a stern test of electronic structure theories, with Density Functional Theory (DFT) often not able to accurately characterise the relative energies of the various ice polymorphs. Thanks to recent advances that enable the accurate and efficient treatment of molecular crystals with Diffusion Monte Carlo (DMC), we present here the DMC -ICE13 dataset; a dataset of lattice energies of 13 ice polymorphs. This dataset encompasses the full structural complexity found in the ambient and high-pressure molecular ice polymorphs, and when experimental reference energies are available, our DMC results deliver sub-chemical accuracy. Using this dataset, we then perform an extensive benchmark of a broad range of DFT functionals. Our results suggest that a single functional achieving reliable performance for all phases is still missing, and that care is needed in the selection of the most appropriate functional for the desired application. The insights obtained here may also be relevant to liquid water and other hydrogen-bonded and dispersion-bonded molecular crystals.

This talk is part of the Theory - Chemistry Research Interest Group series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity