University of Cambridge > > Theory of Condensed Matter > Water flows in carbon nanochannels: from quantum friction to carbon memories

Water flows in carbon nanochannels: from quantum friction to carbon memories

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Edgar Engel.

In this talk, I will discuss various experimental and theoretical results that we obtained recently in our team on the transport of water and ions in ultra-confinement. I will in particular focus on the odd properties of the water-carbon couple, which highlights a variety of exotic transport properties that we will discuss and rationalize, such as ultra-low friction and quantum friction [1,2], specific charge adsorption, strongly non-linear transport and mechano-sensitivity [3,4], …

I will show how these specificities can be used as building blocks to build a ionic machinery, from ion pumps to artificial neuromorphic behavior [5] and the development of elementary ion-based computing.


[1] “Massive radius-dependent flow slippage in single carbon nanotubes” E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria and L. Bocquet, Nature 537 210 (2016)

[2] “Fluctuation-induced quantum friction in nanoscale water flows”, N. Kavokine, M.-L. Bocquet and L. Bocquet, under review (2021)

[3] “Molecular streaming and voltage-gated response in Angström scale channels” T. Mouterde, A. Keerthi, A. Poggioli, S. Dar, A. Siria, A.K. Geim, L Bocquet and R. Boya, Nature 567 87 (2019).

[4] “Mechanically activated ionic transport across single digit carbon nanotubes”, A. Marcotte, T. Mouterde, A. Nigues, A. Siria and L. Bocquet, Nature Materials 19 1057 (2020)

[5] “Modeling of emergent memory and voltage spiking in ionic transport through angström-scale slits”, P. Robin, N. Kavokine, and L. Bocquet, Science, 373, 687–691 (2021

This talk is part of the Theory of Condensed Matter series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity