University of Cambridge > Talks.cam > CMIH Hub seminar series > Statistical Neuroimaging Analysis: An Overview

Statistical Neuroimaging Analysis: An Overview

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Paula Smith.

Abstract: Understanding the inner workings of human brains, as well as their connections with neurological disorders, is one of the most intriguing scientific questions. Studies in neuroscience are greatly facilitated by a variety of neuroimaging technologies, including anatomical magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging, positron emission tomography (PET), among many others. The size and complexity of medical imaging data, however, pose numerous challenges, and call for constant development of new statistical methods. In this talk, I give an overview of a range of neuroimaging topics our group has been investigating, including imaging tensor analysis, brain connectivity network analysis, multimodality analysis, and imaging causal analysis. I also illustrate with a number of specific case studies.

Speaker: Lexin Li, Ph.D., is a Professor of Biostatistics at the Department of Biostatistics and Epidemiology, and Helen Wills Neuroscience Institute, of the University of California, Berkeley. His research interests include neuroimaging analysis, brain connectivity analysis, deep brain stimulation, brain computer interface, and deep learning. He is a Fellow of the American Statistical Association (ASA), a Fellow of the Institute of Mathematical Statistics (IMS), and an Elected Member of the International Statistical Institute (ISI).

This talk is part of the CMIH Hub seminar series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity