COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Engineering - Mechanics and Materials Seminar Series > Bioengineering human liver organoids using induced-pluripotent stem cells in 3D hydrogel
Bioengineering human liver organoids using induced-pluripotent stem cells in 3D hydrogelAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Hilde Hambro. Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 µm diameter pores coated with Collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularize and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGF and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications. This talk is part of the Engineering - Mechanics and Materials Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other lists‘Geographies of Radical Difference’ MRC Centenary - Series of Public Lectures Politics and Paradoxes of Transparency CRASSH Research GroupOther talksAyutthaya in Asian history from the 13th to 18th century BSU Seminar: "Using Gaussian processes to model branching dynamics from single-cell data" (provisional) The Power of Non-invasive Approaches to Conservation Science Kidney cancer: the most lethal urological malignancy Modelling mitochondrial dysfunction in Parkinson’s disease: mitophagy, calcium and beyond |