University of Cambridge > Talks.cam > DAMTP Statistical Physics and Soft Matter Seminar > Physicochemical hydrodynamics of droplets in inkjet printing

Physicochemical hydrodynamics of droplets in inkjet printing

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Sarah Loos.

Inkjet printing is the most widespread technological application of microfluidics. It is characterized by its high drop productivity, small volumes and extreme reproducibility. In this talk I will give a synopsis of the fluid dynamics of inkjet printing and discusses the main challenges for present and future research [1]. These lie both on the printhead side – namely the detailed flow inside the printhead, entrained bubbles, the meniscus dynamics, wetting phenomena at the nozzle plate, and jet formation – and on the receiving substrate side – namely droplet impact, merging, wetting of the substrate, droplet evaporation, and drying. In most cases the droplets are multicomponent, displaying rich physicochemical hydrodynamic phenomena [2]. The challenges on the printhead side and on the receiving substrate side are interwoven, as optimizing the process and the materials with respect to either the printhead side or the substrate side is not enough: As the same ink (or other jetted liquid) is used and as droplet frequency and size matter on both sides, the process must be optimized as a whole. One example for conflicting requirements from the printhead side on the one hand and from the receiving substrate or more specifically the paper side on the other hand is the volatility of the ink: At the nozzle, it would be preferable if the evaporation of ink were avoided to prevent nozzle clogging, but on the paper side, fast evaporation of ink is desirable to enable productive printing and to prevent paper deformation. Even such a seemingly simple process as the evaporation of multicomponent droplets keeps surprising us through its richness of phenomena. I will show and explain several of such phenomena, namely evaporation-triggered segregation thanks to either weak solutal Marangoni flow or thanks to gravitational effects. The dominance of the latter implies that sessile droplets and pending droplets show very different evaporation behavior, even for Bond number << 1. I will also explain the full phase diagram in the Marangoni number vs Rayleigh number phase space, and show where Rayleigh convections rolls prevail, where Marangoni convection rolls prevail, and where they compete, and why these processes are very important in piezoacoustic inkjet printing. I will also extend these considerations to ternary and colloidal droplets and show and explain the new, fascinating, and often counter-intuitive phenomena which occur for these case of complex ink droplets.

[1] Detlef Lohse, Annu. Rev. Fluid Mech. 54, 349-382 (2022). [2] Detlef Lohse and Xuehua Zhang, Nature Rev. Phys. 2, 426-443 (2020).

This talk is part of the DAMTP Statistical Physics and Soft Matter Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity