University of Cambridge > Talks.cam > DAMTP Statistical Physics and Soft Matter Seminar >  A direct link between active matter and sheared granular systems

A direct link between active matter and sheared granular systems

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Patrick Pietzonka.

Zoom link: https://maths-cam-ac-uk.zoom.us/j/94018037756

The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical behavior should be equivalent in infinite dimensions, up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in 2d using a new numerical protocol, termed `athermal quasi-static random displacement’, and find that these mean-field predictions are surprisingly accurate in low dimensions. We identify a general class of perturbations that smoothly interpolate between the uncorrelated localized forces that occur in the high-persistence limit of dense active matter, and system-spanning correlated displacements that occur under applied shear. These results suggest a universal framework for predicting flow, deformation, and failure in active and sheared disordered materials.

https://arxiv.org/abs/2009.07706

This talk is part of the DAMTP Statistical Physics and Soft Matter Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity