University of Cambridge > Talks.cam > Theory - Chemistry Research Interest Group > Designing “Materials that Compute”: Exploiting the Properties of Self-oscillating Polymer Gels

Designing “Materials that Compute”: Exploiting the Properties of Self-oscillating Polymer Gels

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Lucy Colwell.

Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. The oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”.

This talk is part of the Theory - Chemistry Research Interest Group series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity