COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

University of Cambridge > Talks.cam > Logic and Semantics Seminar (Computer Laboratory) > An overview of nominal algebra, lattice, representation and dualities for computer science foundations

## An overview of nominal algebra, lattice, representation and dualities for computer science foundationsAdd to your list(s) Download to your calendar using vCal - Jamie Gabbay
- Tuesday 02 July 2013, 14:00-15:00
- Room FW26, Computer Laboratory, William Gates Building.
If you have a question about this talk, please contact Jonathan Hayman. Nominal algebra lets us axiomatise substitution and quantifiers, and thus the new-quantifier, first-order logic, and the lambda-calculus. Nominal lattice theory lets us characterise binders as greatest and least upper bounds subject to freshness conditions; this is possible for “forall” and “exists” and surprisingly also for “lambda”. From this follow a body of soundness, completeness, representation, and topological duality results for algebraic/lattice-theoretic theories in nominal sets and topological spaces. A great deal of structure is revealed by this, which I will outline. This talk is part of the Logic and Semantics Seminar (Computer Laboratory) series. ## This talk is included in these lists:- All Talks (aka the CURE list)
- Computer Laboratory Programming Research Group Seminar
- Computer Laboratory talks
- Computing and Mathematics
- Logic and Semantics Seminar (Computer Laboratory)
- Room FW26, Computer Laboratory, William Gates Building
- School of Technology
Note that ex-directory lists are not shown. |
## Other listsCamCreative EMBL-EBI Hands On Training MRC/Hitachi Seminars## Other talksCardiac arrhythmias - genetics, metabolism and mechanisms Eleventh William Pitt Seminar: A Higher Purpose: the role of universities in C21st Britain DEMENTIA: What It Is and How It Might Affect You Unlocking the potential of synthetic biology to enhance human health FORTHCOMING SPEAKERS DATES NOT ARRANGED.. Studies on Enzymatic Catalysis of Polar Reactions: Proton Transfer, Hydride Transfer and Decarboxylation |