University of Cambridge > Talks.cam > Physics and Chemistry of Solids Group > 2D Helium Atom Diffraction from a Microscopic Spot

2D Helium Atom Diffraction from a Microscopic Spot

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Stephen Walley.

A method for measuring helium atom diffraction with micron-scale spatial resolution is demonstrated in a scanning helium microscope (SHeM) and applied to study a micron-scale spot on the (100) plane of a lithium fluoride (LiF) crystal. The positions of the observed diffraction peaks provide an accurate measurement of the local lattice spacing, while a combination of close-coupled scattering calculations and Monte Carlo ray-tracing simulations reproduce the main variations in diffracted intensity. Subsequently, the diffraction results are used to enhance image contrast by measuring at different points in reciprocal space. The results open up the possibility for using helium microdiffraction to characterize the morphology of delicate or electron-sensitive materials on small scales. These include many fundamentally and technologically important samples which cannot be studied in conventional atom scattering instruments, such as small grain size exfoliated 2D materials, polycrystalline samples, and other surfaces that do not exhibit long-range order.

This talk is part of the Physics and Chemistry of Solids Group series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity