University of Cambridge > > Biophysical Seminars > Cell morphogenesis across scales, from molecules to forces

Cell morphogenesis across scales, from molecules to forces

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Akhila Kadgathur Jayaram.

A precise control of cell morphology is key for cell physiology, and cell shape deregulation is at the heart of many pathological disorders, including cancer. Cell morphology is intrinsically controlled by mechanical forces acting on the cell surface, to understand shape it is thus essential to investigate the regulation of cellular mechanics.

In animal cells, shape is primarily determined by the cellular cortex, a thin network of actin filaments and myosin motors underlying the plasma membrane. We investigate how the mechanical properties of the cell surface arise from the microscopic organisation of the cortex, and how changes in these properties drive cell deformation. We have developed methods to investigate cortex composition and nanoscale architecture, and are exploring how cortical network mechanics are regulated. Using a combination of cell biology experiments, quantitative imaging and physical modelling, we aim to understand the control of cell shape across scales.

This talk is part of the Biophysical Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity