University of Cambridge > > Theory - Chemistry Research Interest Group > Deep Learning for Molecular Physics

Deep Learning for Molecular Physics

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Lisa Masters.

Solving classical and quantum physics many-body systems are amongst the hardest problems in the natural sciences, but also of fundamental importance for applications such as material and drug design. In this talk, I will give a an overview of fundamental physics problems at multiple time- and lengthscales and describe deep learning methods to address them: 1) solving the quantum-chemical electronic Schrödinger equation with deep variational Monte Carlo, 2) learning to coarse-grain many-body systems, and 3) sampling equilibrium states of classical many-body systems with generative learning.

This talk is part of the Theory - Chemistry Research Interest Group series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity