University of Cambridge > > Logic and Semantics Seminar (Computer Laboratory) > A domain theory for statistical probabilistic programming

A domain theory for statistical probabilistic programming

Add to your list(s) Download to your calendar using vCal

  • UserOhad Kammar, Edinburgh
  • ClockFriday 22 February 2019, 15:00-16:00
  • HouseFW26.

If you have a question about this talk, please contact Victor Gomes.

I will describe our recent work on statistical probabilistic programming languages. These are expressive languages for describing generative Bayesian models of the kinds used in computational statistics and machine learning. We give an adequate denotational semantics for a calculus with recursive higher-order types, continuous probability distributions, and soft constraints. Among them are untyped languages, similar to Church and WebPPL, because our semantics allows recursive mixed-variance datatypes. Our semantics justifies important program equivalences including commutativity.

Our new semantic model is based on `quasi-Borel predomains’. These are a mixture of chain-complete partial orders (cpos) and quasi-Borel spaces. Quasi-Borel spaces are a recent model of probability theory that focuses on sets of admissible random elements. I will give a brief introduction to quasi-Borel spaces and predomains, and their properties.

Probability is traditionally treated in cpo models using probabilistic powerdomains, but these are not known to be commutative on any class of cpos with higher-order functions. By contrast, quasi-Borel predomains do support both a commutative probabilistic powerdomain and higher-order functions, which I will describe.

For more details on this joint work with Matthijs Vákár and Sam Staton, see:

Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A Domain Theory for Statistical Probabilistic Programming. Proc. ACM Program. Lang. 3, POPL , Article 36 (January 2019), 35 pages., DOI : 10.1145/3290349.

This talk is part of the Logic and Semantics Seminar (Computer Laboratory) series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity