COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Immunology in Pathology > Using super-resolution microscopy to watch immune cells kill
Using super-resolution microscopy to watch immune cells killAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Sue Griffin. Host: John Trowsdale (jt233@cam.ac.uk) Cell-contact dependent regulation of immune cell responses plays a vital role in balancing the need for rapid and efficient responses to a wide variety of pathological challenges, while at the same time maintaining self-tolerance. Over the last decade, much research has studied how immune cell interactions are often accompanied by the segregation of proteins into micrometer- and submicrometer-scale domains at an immune synapse. The emerging new paradigm is that interactions between immune cell receptors, kinases and adaptors are at least in part controlled by transient interactions between supramolecular assemblies. This is a significantly different concept from a linear cascade of individual protein-protein interactions depicted in textbook diagrams of immune receptor signaling pathways. Here, I will present new data using high- and super-resolution imaging techniques that reveal novel insights into molecular recognition by human Natural Killer cells and how specific effector functions are realized. Our data reveal, for example, that remodelling of the cortical actin mesh occurs at the central region of the NK cell immune synapse during a cytolytic response. This is likely to occur for other types of cell secretion and emphasises the importance of emerging super-resolution imaging technology for revealing new biology. This talk is part of the Immunology in Pathology series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge Psychometrics Centre Seminars Cambridge Science FestivalOther talksGlucagon like peptide-1 receptor - a possible role for beta cell physiology in susceptibility to autoimmune diabetes My VM is Lighter (and Safer) than your Container Replication or exploration? Sequential design for stochastic simulation experiments The spin evolution of supermassive black holes Doctor Who: Gridlock THE PYE STORY Atiyah Floer conjecture ***PLEASE NOTE THIS SEMINAR IS CANCELLED*** TBC Cambridge - Corporate Finance Theory Symposium September 2017 - Day 2 Mathematical applications of little string theory How to make good scientific figures |