University of Cambridge > > Morphogenesis Seminar Series > Mechanisms and mechanics of morphogenesis

Mechanisms and mechanics of morphogenesis

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Jia CHEN.


How organ shape and therefore function is encoded by the genome remains a major unresolved question in biology. All tissues arise from simple precursors or primordia. These become patterned through transcriptional changes within individual cells, and we have made much progress in untangling gene regulatory networks responsible, especially more recently using single-cell genome-wide approaches. How such patterning is then turned into physical changes at the molecular, cell and tissue scale is much less understood. This is the focus of my lab’s research, the emergence of shape and function, primed by cell-specific transcriptional changes, but implemented through highly coordinated changes of many cells in conjunction. Although transcriptional and biochemical control operates in individual cells, coordination works at the tissue scale, and we so far only understand small aspects of it. Because organ shape is critical for organ function, defects in morphogenesis lead to severe diseases including spina bifida or polycystic kidney disease. We want to understand the importance of cytoskeletal crosstalk, the coordination of events and forces within a tissue, and the role of spatial and temporal control by upstream transcriptional regulation. To do so, we utilise a highly tractable model process in Drosophila and combine it with a powerful organoid culture models of human tissue morphogenesis.

Zoom link: (Meeting ID: 879 3994 3699)

This talk is part of the Morphogenesis Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity