COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Institute for Energy and Environmental Flows (IEEF) > On the origin of the hydraulic jump in a thin liquid film
On the origin of the hydraulic jump in a thin liquid filmAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Catherine Pearson. For more than a century, it has been believed that all hydraulic jumps are created due to gravity. However, we found that thin-film hydraulic jumps are not induced by gravity. This study explores the initiation of thin-film hydraulic jumps. For circular jumps produced by the normal impingement of a jet onto a solid surface, we found that the jump is formed when surface tension and viscous forces balance the momentum in the film and gravity plays no significant role. Experiments show no dependence on the orientation of the surface and a scaling relation balancing viscous forces and surface tension collapses the experimental data. Experiments on thin film planar jumps in a channel also show that the predominant balance is with surface tension, although for the thickness of the films we studied gravity also played a role in the jump formation. A theoretical analysis shows that the downstream transport of surface tension energy is the previously neglected, critical ingredient in these flows and that capillary waves play the role of gravity waves in a traditional jump in demarcating the transition from the supercritical to subcritical flow associated with these jumps. This talk is part of the Institute for Energy and Environmental Flows (IEEF) series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other lists6th Annual Cambridge Technology Ventures Conference - June 11th Cambridge Geotechnical Society Seminar Series Cambridge Review of International AffairsOther talksRegulators of Muscle Stem Cell Fate and Function Insulin/IGF-1 stimulates PERIOD protein synthesis to communicate feeding time to the mammalian circadian clock Colorectal cancer. Part 1. Presentation, Diagnosis and Intervention. Part 2. Cellular signalling networks in colon cancer and the models to study them - a basic research perspective GSI / Environmental Law seminar - Richard Buxton Law Kidney cancer: the most lethal urological malignancy Peak Youth: the end of the beginning |