University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Slopes, colored links and Kojima's eta concordance invariant

Slopes, colored links and Kojima's eta concordance invariant

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

HTLW02 - 3-manifold workshop

In this talk we will introduce an invariant, the slope, for a colored link in a homology sphere together with a suitable multiplicative character defined on the link group. The slope takes values in the complex numbers union infinity and it is real for finite order characters. It is a generalization of Kojima's eta-invariant and can be expressed as a quotient of Conway polynomials. It is also related to the correction term in Wall’s non-additivity formula for the signatures of 4-manifolds, and as such it appears naturally as a correction term in the expression of the signature formula for the splice of two colored links. This is a work in progress with Alex Degtyarev and Vincent Florens.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity