COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Machine Learning Journal Club > Bayesian integration in sensorimotor learning
Bayesian integration in sensorimotor learningAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Emli-Mari Nel. This paper is by Konrad Körding and Daniel Wolpert, Nature (2004). Available here: http://homepages.inf.ed.ac.uk/svijayak/teaching/MLSC/HW2papers/Wolpert.pdf ABSTRACT When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball’s velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate1–4. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory an optimal estimate results from combining information about the distribution of velocities—the prior—with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning. This talk is part of the Machine Learning Journal Club series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsEarthing Spirituality Cambridge Lovelace Hackathons Martin Centre Research Seminar Series – 44th Annual Series of Lunchtime LecturesOther talksValidation & testing of novel therapeutic targets to treat osteosarcoma Adaptation in log-concave density estimation Planck Stars: theory and observations NatHistFest: the 99th Conversazione and exhibition on the wonders of the natural world. Respiratory Problems "The integrated stress response – a double edged sword in skeletal development and disease" The Productivity Paradox: are we too busy to get anything done? Immigration and Freedom Asclepiadaceae Direct measurements of dynamic granular compaction at the mesoscale using synchrotron X-ray radiography |