COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Learning Low-Dimensional Metrics

## Learning Low-Dimensional MetricsAdd to your list(s) Download to your calendar using vCal - Robert Nowak (University of Wisconsin-Madison; Toyota Technological Institute )
- Tuesday 20 March 2018, 09:00-10:00
- Seminar Room 1, Newton Institute.
If you have a question about this talk, please contact info@newton.ac.uk. STSW02 - Statistics of geometric features and new data types This talk discusses the problem of learning a low-dimensional Euclidean metric from distance comparisons. Specifically, consider a set of n items with high-dimensional features and suppose we are given a set of (possibly noisy) distance comparisons of the form sign(dist(x,y) − dist(x,z)), where x, y, and z are the features associated with three such items. The goal is to learn the distance function that generates such comparisons. The talk focuses on several key issues pertaining to the theoretical foundations of metric learning: 1) optimization methods for learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) upper and lower (minimax) bounds on prediction error; 3) quantification of the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric; 4) bounds on the accuracy of the learned metric relative to the underlying true generative metric. Our results involve novel mathematical approaches to the metric learning problem and shed new light on the special case of ordinal embedding (aka non-metric multidimensional scaling). This is joint work with Lalit Jain and Blake Mason. This talk is part of the Isaac Newton Institute Seminar Series series. ## This talk is included in these lists:- All CMS events
- Featured lists
- INI info aggregator
- Isaac Newton Institute Seminar Series
- School of Physical Sciences
- Seminar Room 1, Newton Institute
Note that ex-directory lists are not shown. |
## Other listsSchool of Physical Sciences CCLP Seminar## Other talksSystems for Big Data Applications: Revolutionising personal computing Neural Networks and Natural Language Processing Weighted reduced order methods for parametrized PDEs with random inputs Questions and Wrap-up Demographics, presentation, diagnosis and patient pathway of haematological malignancies Certified dimension reduction of the input parameter space of vector-valued functions |