University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Schiffer variations and Abelian differentials

Schiffer variations and Abelian differentials

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact webseminars.

This talk has been canceled/deleted

Given a Riemann surface and an Abelian differential, we consider Cech style deformations based at zeros of the differential. Deformations are given in terms of slit mappings, degenerate Schwarz Christoffel mappings. We describe the associated deformation cocycles valued in vector fields.

Schiffer gave an exact formula for the change in the double pole Green’s function corresponding to his conformal gluing deformation. We follow his approach and develop the second order variation formula for the double pole Green’s function. Consequences are second order variation formulas for Abelian differentials and for the Riemann period matrix. The second variation of the period matrix is in the style of Rauch’s celebrated formula and is given in terms of the 2-jet of the corresponding differentials at the base point zero.

Applications may include the Teichmuller geodesic flow on the space of Abelian differentials and the curvature of the Siegel upper half space metric on the image of Teichmuller space by the period matrix mapping.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity