University of Cambridge > Talks.cam > Statistics > Model Selection in High-Dimensional Misspecified Models

Model Selection in High-Dimensional Misspecified Models

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact .

This talk has been canceled/deleted

Model selection is indispensable to high-dimensional sparse modeling in selecting the best set of covariates among a sequence of candidate models. Most existing work assumes implicitly that the model is correctly specified or of fixed dimensions. Yet model misspecification and high dimensionality are common in real applications. In this paper, we investigate two classical Kullback-Leibler divergence and Bayesian principles of model selection in the setting of high-dimensional misspecified models. Asymptotic expansions of these principles reveal that the effect of model misspecification is crucial and should be taken into account, leading to the generalized AIC and generalized BIC in high dimensions. With a natural choice of prior probabilities, we suggest the generalized BIC with prior probability which involves a logarithmic factor of the dimensionality in penalizing model complexity. We further establish the consistency of the covariance contrast matrix estimator in a general setting. Our results and new method are supported by numerical studies.

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity