University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > TBA

TBA

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

This talk has been canceled/deleted

In the present lecture we give an overview of the analytical and numerical properties of the spatially homogeneous granular Boltzmann equation. The presentation is based on the three articles. In the first article [1], we consider the uniformly heated spatially homogeneous granular Boltzmann equation. A new stochastic numerical algorithm for this problem is presented and tested using analytical relaxation of the temperature. The tails of the steady state distribution, which are overpopulated for the steady state solutions of the granular Boltzmann equation,are computed using this algorithm and the re- sults are compared with the available analytical information. In the second paper [2], we deal again with this equation and consider the DSMC -error due to splitting technique using the time step t. This equation provides the possibility to see the t error of the first order when using standard splitting technique and of the second order for Strangs splitting method, In contrast, a new direct simulation method recently introduced in [1] is ex- act, i.e. the error is a function of the number of particleds n and of the number of independent ensembles N rep. Thus this method can be seen as a correct generalization of the classical DSMC for the inelastic Boltzmann equation. Finally, in [3], we consider an inelastic gas in a host medium. The numerical algorithm is tested by the use of the analytical relaxation of the momentum and of the temperature. References [1] I. M. Gamba, S. Rjasanow, and W. Wagner. Direct simulation of the uniformly heated granular Boltzmann equation. Math. Comput. Modelling , 42(5-6):683700, 2005. [2] S. Rjasanow and W. Wagner. Time splitting error in DSMC schemes for the inelastic Boltzmann equation. SIAM J . Numerical Anal., 45(1):54 67, 2007. [3] M. Bisi, S. Rjasanow and G. Spiga. A numerical study of the granular gas in a host medium. In preparation, 2010

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity