University of Cambridge > Talks.cam > Quantum Computing for Quantum Chemistry > Quantum state preparation via piecewise QSVT

Quantum state preparation via piecewise QSVT

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Chiara Leadbeater.

Efficient state preparation is essential for implementing efficient quantum algorithms. Whilst several techniques for low-cost state preparation exist, this work facilitates further classes of states, whose amplitudes are well approximated by piecewise polynomials. We show how such states can be efficiently prepared using a piecewise Quantum Singular Value Transformation along with a new piecewise linear diagonal block encoding. We illustrate this with the explicit examples of √ x |x⟩ and log x |x⟩. Further, our technique reduces the cost of window boosted Quantum Phase Estimation by efficiently preparing the B-spline window state. We demonstrate this window state requires 100 times fewer T-gates to prepare than the state-of-the-art Kaiser window state, and we show that the B-spline window replicates the Kaiser window’s exponential reduction in tail probability for QPE .

This talk is part of the Quantum Computing for Quantum Chemistry series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity