University of Cambridge > Talks.cam > Causal Inference Reading Group > Leveraging multi-study, multi-outcome data to improve external validity and efficiency of clinical trials for managing schizophrenia

Leveraging multi-study, multi-outcome data to improve external validity and efficiency of clinical trials for managing schizophrenia

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Qingyuan Zhao.

This talk has been canceled/deleted

As data sources have become more plentiful and readily accessible, the practice of data fusion has become increasingly ubiquitous. However, when the focus is on a causal effect on a particular outcome, a major limitation is that this outcome may not be available in all data sources. In fact, different randomized experiments or observational studies of a common exposure will often focus on potentially related, yet distinct outcomes. One such example is the Database of Cognitive Training and Remediation Studies (DoCTRS), which consists of several randomized trials of the effect of cognitive remediation therapy on various outcomes among patients with schizophrenia. We develop causally principled methodology for fusing data sets when multiple outcomes are observed across studies, which leverages outcomes of secondary interest as informative proxies for the missing outcome of primary interest, thereby maximizing power and efficiency by making full use of the available data. As this methodology relies on a key transportability assumption, we also develop methods to assess the degree of sensitivity to violations of this assumption. We apply this methodology to data from the DoCTRS trials to make improved causal inferences about the effectiveness of cognitive remediation therapy on cognition among patients with schizophrenia.

This talk is part of the Causal Inference Reading Group series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity