University of Cambridge > Talks.cam > Exoplanet Seminars > Disc evolution in young intermediate-mass stars

Disc evolution in young intermediate-mass stars

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Emily Sandford.

Planets are born from circumstellar discs and the evolution of these discs determines the final architecture of planetary systems. The stellar mass range between 1.5 and 3.5 solar masses presents a particularly interesting circumstellar disc evolution; most notably, it is dominated by the EUV /FUV photoevaporation regime on the pre-main sequence, it contains the majority of gaseous debris discs, and it also shows the highest giant planet frequency. In our recent spectroscopic VLT /X-Shooter survey (UV to nIR), combined with WISE data (nIR to mIR), we identified 135 pre-main sequence (PMS) intermediate mass stars (IMSs) in the Southern sky. This is the first unbiased sample of IMSs in the PMS , allowing a study of disc evolution. Our sample, encompassing protoplanetary and debris discs, also revealed a significant number of discs between these two evolutionary stages. We find that the IR excess evolution of IMSs differs from that seen for low-mass stars (LMSs), exemplified by samples drawn from nearby star forming regions. We observe that, in IMSs, the inner disc regions are vacated in their entirety, in contrast to the LMSs where we note a more gradual inside-out dissipation. We also investigated the presence of gas absorption features in our sample via optical high-resolution spectroscopy to identify gas-bearing debris discs. This requires detailed comparisons to spectra of nearby stars to eliminate objects with foreground cloud absorption as cause of the absorption features. In particular, we apply this effective method to one such disc, eta Tel, discarding the earlier claim of disc wind as the origin for the absorption features. Finally, we discuss our several ongoing and future surveys investigating the nature of circumstellar discs around IMSs.

This talk is part of the Exoplanet Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity