COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Lennard-Jones Centre > Moving beyond screening via generative machine learning models
Moving beyond screening via generative machine learning modelsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Dr Christoph Schran. Machine learning already enables the discovery of new materials by providing rapid predictions of properties to complement slower calculations and experiments. However, a persistent criticism of machine learning enabled materials discovery is that new materials are very similar, both chemically and structurally, to previously known materials. This begs the question “Can machine learning ever learn new chemistries and families of materials that differ from those present in the training data?” In this talk, I will describe two important tools we are developing to truly move beyond screening to actual discovery. First, I will describe new generative machine learning approaches that can be used to generate structures that do not yet exist, but are likely to. I will compare generative models including variational autoencoders, generative adversarial networks, and diffusion models which have become standard in machine learning for images. I will describe the unique challenges that we face when using tools of this nature to generate periodic crystalline structures. Second, I will describe the Descending from Stochastic Clustering Variance Regression (DiSCoVeR) algorithm to bias the discovery of new suggested materials away from known chemistries in a systematic way towards unintuitive and even unlikely yet promising candidates for new materials. This talk is part of the Lennard-Jones Centre series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listssociology Quality Spares Centre Cancer Genetic Epidemiology Seminar SeriesOther talksTBA Lunch A web of entanglements: following East African cowries across land and oceans (18th-19th century) Double-edged swords: innate and adaptive immune factors that inhibit or promote SARS-CoV-2 entry High-frequency scattering by polygons and wedges via the complex-scaled half-space matching method |