University of Cambridge > > Theoretical Chemistry Informal Seminars > Physical theory of vaccine design for influenza and dengue fever

Physical theory of vaccine design for influenza and dengue fever

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Mark Miller.

This talk has been canceled/deleted

The immune system normally protects the human host against death by infection.I will introduce a physical theory of the evolutionary dynamics that occurs in the antibody-mediated and T cell-mediated immune responses. The theory will be used to provide a mechanism for original antigenic sin, wherein an initial exposure to antigen can degrade the response of the immune system upon subsequent exposure to related, but different, antigens. A new order parameter to characterize antigenic distance will be introduced from the theory. This order parameter predicts effectiveness of the influenza vaccine more reliably than do results from animal model studies currently used by world health authorities. I will discuss how this order parameter might be a valuable new tool for making vaccine-related public health policy decisions. Next, I will briefly discuss dengue fever. Infection with, or vaccination against, one of the four serotypes of dengue fever typically increases susceptibility to dengue hemorrhagic fever from one of the other three serotypes. I will present a physical theory of this immunodominance and use this theory to quantify the predicted mitigation of immunodominance in a novel formulation of the dengue vaccine.

This talk is part of the Theoretical Chemistry Informal Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity