University of Cambridge > > Machine learning in Physics, Chemistry and Materials discussion group (MLDG) > dNNsolve: an efficient NN-based PDE solver

dNNsolve: an efficient NN-based PDE solver

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Bingqing Cheng .

Neural Networks (NNs) can be used to solve Ordinary and Partial Differential Equations (ODEs and PDEs) by redefining the question as an optimization problem. The objective function to be optimized is the sum of the squares of the PDE to be solved and of the initial/boundary conditions. A feed forward NN is trained to minimise this loss function evaluated on a set of collocation points sampled from the domain where the problem is defined. A compact and smooth solution, that only depends on the weights of the trained NN, is then obtained. This approach is often referred to as ‘Physics Informed Neural Network’ (PINN). Despite the success of the PINN approach in solving various classes of PDEs, an implementation of this idea that is capable of solving a large class of ODEs and PDEs with good accuracy and without the need to finely tune the hyperparameters of the network, is not available yet. In this paper, we introduce a new implementation of this concept – called dNNsolve – that makes use of dual Neural Networks to solve ODEs/PDEs. We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1,2 and 3 spatial dimensions, without the need of hyperparameter fine-tuning.

This talk is part of the Machine learning in Physics, Chemistry and Materials discussion group (MLDG) series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity