University of Cambridge > > Materials Modelling Seminars > Material modification at Megabar pressures with ultrashort laser pulses

Material modification at Megabar pressures with ultrashort laser pulses

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Joseph Nelson.

Ultrashort laser pulses focussed down to a micron-size spot subsurface of transparent materials can achieve energy densities on the order of MJ/cm3, resulting in solid-density plasma formation, followed by a microexplosion and shockwave compression of the surrounding substance. Subsequent rapid quenching leads to the formation and preservation of novel non-equilibrium material states. Reaching extreme pressures is of fundamental interest for the formation of new material phases, and also for the study of the Warm Dense Matter, reproducing the state of the cores of planets in table-top laboratory experiments.

Ultrafast laser induced microexplosion in confined geometry has already demonstrated the potential to create and preserve new thermodynamically non-equilibrium state of matter such as bcc-Al [1] and two tetragonal phases of Si [2]. These new phases have been predicted to exist theoretically, but have never before observed in nature or in laboratory experiments. In this talk I’ll present a new way for increasing the shock wave affected volume by using a micro-Bessel beam with a 100:1 aspect ratio [3,4]. The experimental results show an effective formation of voids when such a beam focused inside sapphire crystal, which is a clear indication of significantly increased efficiency of new phase formation when compared with the previous experiments with a Gaussian laser beam. The results open up a new way for increasing the quantity of high-density/pressure phases and help to increase sensitivity in search of new phases using X-ray and electron diffraction analysis.

[1] A. Vailionis et al., “Evidence of superdense aluminium synthesized by ultrafast microexplosion”, Nat. Comm. 2, 445 (2011).

[2] L. Rapp et al., “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion”, Nat. Comm. 6, 7555 (2015).

[3] L. Rapp et al., “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams”, Sci. Rep. 6, 34286 (2016).

[4] E. G. Gamaly and A. V. Rode, “Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)”, Appl. Phys. A 124, 278 (2018).

This talk is part of the Materials Modelling Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2022, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity