COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
Introduction to Fractional Calculus
Add to your list(s)
Send you e-mail reminders
Further detail
Can we get nth derivatives, where n is not an integer? This question is nearly as old as calculus itself, being first asked by Leibniz in 1695. In the first talk in this introduction to what is usually called fractional calculus, we will ask how far we can generalise the order of differentiation, beyond Z, to R, C, and further still. In the second talk, we will look at what theorems from integer-order calculus we can generalise, and we will employ fractional calculus (or to use a preferable term, analytic calculus) to derive a formula for the Riemann zeta function, and thus an equivalent expression for the Riemann Hypothesis, in terms of Euler’s gamma function. If you have a question about this list, please contact: Arran Fernandez. If you have a question about a specific talk, click on that talk to find its organiser. 0 upcoming talks and 2 talks in the archive. Please see above for contact details for this list. |
Other listsChanging Health St Catharine's Political Economy Seminars ELRIG Inaugural Cambridge Networking EventOther talksConstructing the virtual fundamental cycle Peak Youth: the end of the beginning Algorithmic Investigation of Large Biological Data sets Beating your final boss battle, or presenting with confidence and style (tough mode) “Soap cost a dollar”: Jostling with minds in economic contexts Single Cell Seminars (October) XZ: X-ray spectroscopic redshifts of obscured AGN Networks, resilience and complexity TBC Single Cell Seminars (September) Art speak |