University of Cambridge > > Isaac Newton Institute Seminar Series > Vortices and knots in quantum fluids

Vortices and knots in quantum fluids

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Topological Dynamics in the Physical and Biological Sciences

In superfluid helium and in atomic Bose-Einstein condensates, quantum mechanics constrains the rotational motion to discrete filaments of fixed circulation which is equal to Planck’s constant divided by the mass of the relevant boson. Because of their simplicity (no viscosity, vorticity confined to vortex lines, fixed circulation), quantum fluids are ideal systems where to study the topology of vortex flows.

In this talk I shall report results on the motion of vortex rings perturbed by Kelvin waves (a classical problem first studied by Lord Kelvin), vortex bundles, vortex knots and turbulent tangles of such discrete vortices. In the case of turbulence, I shall focus on its properties, and the relation between kinetic energy and vortex length.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity