University of Cambridge > Talks.cam > Probability > Critical temperature of the square lattice Potts model

Critical temperature of the square lattice Potts model

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Berestycki.

This talk has been canceled/deleted

In this talk, we derive the critical temperature of the q-state Potts model on the square lattice (q \geq 2). More precisely, we consider a geometric representation of the Potts model, called the random-cluster model. Spin correlations of the Potts model get rephrased as connectivity properties of the random-cluster model. The critical temperature of the Potts model is therefore related to the critical point of the random-cluster model. For the later, a duality relation allows us to compute the critical value using a crossing estimate (similar to the celebrated Russo-Seymour-Welsh theory for percolation) and a sharp threshold theorem. This result has many applications in the eld and we will briefly mention some of them at the end of the talk. Joint work with V. Be ara.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity