University of Cambridge > Talks.cam > Exoplanet Seminars > Understanding the initial stages of planet-driven gap formation 

Understanding the initial stages of planet-driven gap formation 

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Dolev Bashi.

Gaps and rings are ubiquitous in observations of protoplanetary discs, and their existence may be attributed to (proto-)planets interacting with their natal environments. However, constraining protoplanet masses or ages – or even just confirming that protoplanets are the cause of these substructures – in any given observation requires a clear theoretical understanding of large numbers of different gap processes.

While theoretical and semi-analytical works exist for the viscously dominated end stages of gap evolution, due to the near inviscid nature of protoplanetary discs, time-dependent theories that can account for the nature of the mutual evolution between planet and disc are required to correctly interpret observations. I will first present on how planets form gaps in the simplest possible case: that of a low mass planet in an two-dimensional inviscid isothermal disc and show new analytical theory that is able to predict the initial stages of gap evolution in this case. Using both Athena++ numerical simulations and analytical arguments, I will then discuss how this picture is modified in the cases of viscous, thermodynamically active, or three-dimensional discs. I will show that the treatment of disc thermodynamics has significant effects on the planet disc interaction whereas viscosity – at the levels expected in protoplanetary discs – does not have a significant impact at the early stages of gap formation.

This talk is part of the Exoplanet Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity