COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Orthogonal polynomials, singular integrals, and solving Riemann–Hilbert problems: Lecture 1

## Orthogonal polynomials, singular integrals, and solving Riemann–Hilbert problems: Lecture 1Add to your list(s) Download to your calendar using vCal - Sheehan Olver (Imperial College London)
- Wednesday 07 August 2019, 12:00-13:15
- Seminar Room 1, Newton Institute.
If you have a question about this talk, please contact info@newton.ac.uk. WHT - Bringing pure and applied analysis together via the Wiener-Hopf technique, its generalisations and applications Orthogonal polynomials are fundamental tools in numerical methods, including for singular integral equations. A known result is that Cauchy transforms of weighted orthogonal polynomials satisfy the same three-term recurrences as the orthogonal polynomials themselves for n > 0. This basic fact leads to extremely effective schemes of calculating singular integrals and discretisations of singular integral equations that converge spectrally fast (faster than any algebraic power). Applications considered include matrix Riemann–Hilbert problems on contours consisting of interconnected line segments and Wiener–Hopf problems. This technique is extendible to calculating singular integrals with logarithmic kernels, with applications to Green’s function reduction of PDEs such as the Helmholtz equation. This talk is part of the Isaac Newton Institute Seminar Series series. ## This talk is included in these lists:- All CMS events
- Featured lists
- INI info aggregator
- Isaac Newton Institute Seminar Series
- School of Physical Sciences
- Seminar Room 1, Newton Institute
- bld31
Note that ex-directory lists are not shown. |
## Other lists. CAMSED 5th Cambridge Assessment Conference: Challenges of assessment reform## Other talksPanel discussion on “Model coupling” LEARNING TO BUILD: HOW MACHINE LEARNING RESHAPES THE WAY WE DEVELOP HIGH-TECHNOLOGY PRODUCTS Alan Turing and the Enigma Machine From Sommerfeld diffraction problems to operator factorisation: Lecture 2 G I TAYLOR LECTURE - The Silent Flight of the Owl |