University of Cambridge > Talks.cam > Fluids Group Seminar (CUED) > Extrapolating turbulence to higher Re

Extrapolating turbulence to higher Re

Add to your list(s) Download to your calendar using vCal

  • UserProfessor Sergei Chernyshenko and Chi Zhang, Imperial College, London
  • ClockFriday 10 February 2017, 13:00-14:00
  • HouseJDB Seminar Room, CUED.

If you have a question about this talk, please contact Akshath Sharma.

In many practical applications, the Reynolds number Re is much greater than the largest Re that can be achieved in direct numerical simulations and wind-tunnel experiments. Hence, to apply the turbulence-related results obtained in a wind tunnels or with computers, extrapolation to higher Re is needed. For the part of the flow very close to the wall such extrapolation is usually based on the classical universality hypothesis stating that near the wall the turbulent flow parameters, expressed in so-called wall units, are independent of Re. However, in recent years it was established that the large-scale structures residing further away from the wall affect the near-wall turbulence. Since these structures, if expressed in wall units, are not Re-independent, the classical universality hypothesis is not correct. Moreover, recent data indicate that as Re increases the outer large-scale structures become stronger. An outline will be given of the new technique for extrapolating statistical characteristics of near-wall turbulence from medium to higher Re, based on the recently developed quasi-steady quasi-homogeneous (QSQH) theory. The QSQH theory is an alternative to the classical universality hypothesis. The QSQH theory provided relationships between many turbulence parameters previously thought to be unrelated, including for example those entering the well-known empirical formula for the modulation of near-wall turbulence by outer structures, and threw a new light on the Re-dependence of the logarithmic law constants. First results on extrapolating turbulence statistics to higher Re will also be presented.

This talk is part of the Fluids Group Seminar (CUED) series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity