COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Cambridge Systems and Synthetic Biology Study Group > Models and software applied to biomedical research
Models and software applied to biomedical researchAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Ye Yuan. Cells, a fundamental unit of life on this planet, are able to process information deriving both from outside and within to make life-preserving decisions. Molecular signals are passed within and between cells and generated in response to extracellular stimuli, and feed into biochemical networks that carry out the major functions of an organism: energy storage, protection from pathogens, time-of-day determination, etc. Understanding biological information processing is fundamental for learning how to treat and prevent disease, or even for using biochemistry to perform computation. In this talk, I’ll show how I am using mechanistic models to reverse- and forward-engineer complex biochemistry, incorporating experimental observations and exploiting modularity in the system description. As case studies, I will show how we are using software and modelling to projects in the fields of immunology and synthetic biology. The immune system is a complex set of mechanisms that seek to identify and rid foreign (pathogen-derived) proteins, requiring extensive information processing. I’ll introduce the first computational model of the MHC class I pathway, which has helped to elucidate how cells present a filtered snapshot of their internal contents to T lymphocytes (which blood cells), the first step in the immune system recognition of viral infection. Synthetic biology offers the potential to utilise the cellular environment for functions not intended by evolution alone. By inserting additional DNA , new functions/components can be conferred to cells that can be used to synthesise medicines and biofuels, or to teach us about how biochemistry facilitates information processing. I will show how to engineer complex spatio-temporal behaviours in populations of interacting bacteria, using intercellular signalling, inducible gene expression, rigorous model-based design, and a software framework for facilitating rapid system analysis. This talk is part of the Cambridge Systems and Synthetic Biology Study Group series. This talk is included in these lists:Note that ex-directory lists are not shown. |
Other listsFluid Mechanics (DAMTP) Magdalene College - Investec Lecture in Business The George Macaulay Trevelyan Lectures 2012Other talksAutumn Cactus & Succulent Show It's dangerous to go alone, take this - using Twitter for research Polynomial approximation of high-dimensional functions on irregular domains Surface meltwater ponding and drainage causes ice-shelf flexure Light Scattering techniques The MHC ligandome of two contagious cancers within the Tasmanian devil population, Devil Facial Tumour 1 and Devil Facial Tumour 2 The role of myosin VI in connexin 43 gap junction accretion "Mechanosensitive regulation of cancer epigenetics and pluripotency" Formation and disease relevance of axonal endoplasmic reticulum, a "neuron within a neuron”. Constructing the virtual fundamental cycle Active vertex model(s) for epithelial cell sheets |